Abstract
Thermodynamic arguments show that a sonoluminescing bubble that acts as a black body can absorb energy from a high power, pulsed laser beam. The mechanism for increasing the temperature of a sonoluminescing bubble is discussed and experiments with a frequency doubled, pulsed Nd:YAG laser are described. A bound for the amount of radiation absorbed is given as no evidence for heating was found at the low radiation intensity employed in the experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.