Abstract

In this paper, we propose a score test to study a vector autoregressive model and its detection of extreme values. We take a likelihood approach to derive the corresponding maximum likelihood estimators and information matrix. We establish the score statistic for the vector autoregressive model under two perturbation schemes for identifying possible influential cases or outliers. The effectiveness of the proposed diagnostics is examined by a simulation study. To make an application, a data analysis is performed using the model to fit monthly log-returns of International Business Machines Corporation stock and the Standard & Poor's 500 index. Lastly, comparisons between the results by the score test and the local influence method are made. We establish two important findings that the score test is more effective while the local influence analysis can be used to diagnose more influential cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.