Abstract

Abstract. In order to simulate the scattering properties of nonspherical aerosol particles in visible and near infrared band precisely and efficiently, a scattering computation model for aerosol particles based on parallel FDTD (Finite Difference Time Domain) is developed. The basic principle of FDTD is introduced, and a new parallel computation scheme for FDTD is proposed, and is realized by MPI repeated non-blocking communication technique. The FDTD scattering model is validated against Lorenz-Mie theory and T Matrix method. Simulation results show that, the scattering properties obtained parallel FDTD scattering model are qualitatively in good agreement with the T matrix method and Lorenz-Mie theory, validating the accuracy of our model. The relative simulation error of Mueller is slightly larger in forward scattering directions than that in backward directions for particles with small size parameter, while for large particles, the result is opposite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.