Abstract
We report on the development of a new type of scanning acoustic microscope. We use a femtosecond light pulse to generate a short sound pulse, and then focus this sound onto the sample by means of a specially designed and microfabricated acoustic lens of radius a few microns. The sound travels to the sample through a thin layer of water. The sound reflected from the sample is collected by the lens and then passes through a monolithically integrated optical resonant cavity. The induced change in the properties of this cavity are measured using a time-delayed probe light pulse. We describe some of the challenges involved in the construction and operation of this high-precision metrology apparatus and present some preliminary results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.