Abstract

We describe a novel, formal verification technique for proving the correctness of a pipelined microprocessor that focuses specifically on pipeline control logic. We iteratively deconstruct a pipeline by merging adjacent pipeline stages, allowing for the verification to be done in several easier steps. We present an inductive proof methodology that verifies that pipeline behaviour is preserved as the pipeline depth is reduced via deconstruction; this inductive approach is less sensitive to pipeline depth and complexity than previous approaches. Invariants are used to simplify the proof, and datapath components are abstracted using validity checking with uninterpreted functions. We present experimental results from the formal verification of a DLX five-stage pipeline using our technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.