Abstract
Regulatory complexes formed by the CytR repressor protein and the cAMP receptor protein (CRP) prevent transcription initiation from several promoters in Escherichia coli. The formation of the complexes is mediated by protein-DNA interactions and protein-protein interactions between the two regulators. Interestingly, co-binding with CRP has a profound effect on the configuration of the DNA-binding targets preferred by CytR. When binding to DNA by itself, CytR binds preferentially to two octamer repeats in direct or inverted orientation, and separated by 2 bp. However, in the presence of CRP, CytR recognizes inverted repeats separated by 10-13 bp, or direct repeats separated by 1 bp. A fixed orientation of at least one CytR octamer repeat in close proximity to a CRP-binding target is a common architectural feature at promoters optimised for repression complex formation. These observations suggest that CRP alters the DNA-binding mode of CytR. Here, we have investigated the CRP-induced changes in CytR by protein footprinting and alanine-scanning mutagenesis. Our data suggest that a flexible interdomain linker region in CytR, connecting the DNA-binding domain to the dimerization domain allows the repressor protein to interact with DNA-binding sites in a highly relaxed manner, as shown previously, and plays an active role in transcription regulation. Thus, the interactions between CRP, CytR and DNA within the repression complex appear to be more extensive than anticipated. The results support and extend the view that the high degree of adaptability observed in the CytR/CRP regulatory system is obtained though multiple adjustable interactions between the implicated factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.