Abstract

All eukaryotic cells have regulatory mechanisms that limit genomic replication to a single round each cell cycle. These systems function by blocking formation of prereplication complexes. The regulatory mechanisms in the yeast S. cerevisiae have been identified, but these do not appear to be conserved in metazoans. Using Xenopus egg extracts, we have identified a metazoan-specific regulatory system that limits replication to a single round. We show that during S phase, soluble MCM helicase, an essential initiation factor, is inactivated when it associates with exportin-1/Crm1. Formation of this complex is dependent on both high Ran-GTP and cdk2 kinase activity. Lowering Ran-GTP within nuclei or nuclear extracts allows MCM to reassociate with chromatin during S phase and induces re-replication. Importantly, prevention of re-replication requires MCM-Crm1 complex formation, but it does not require export of MCM from the nucleus. Therefore, in metazoans, Crm1 functions in both nuclear export and blocking of re-replication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.