Abstract
This study investigated the expression and tissue distribution of inositol monophosphatase (IMPA1) and characterized its role in salinity adaptation in the eel. The coding sequence of eel IMPA1 was determined and confirmed to be orthologous to the mammalian gene/enzyme by phylogenetic analysis and structural modeling. Quantitative real-time PCR and Western blot techniques indicated up to 17-fold increases in mRNA expression and 2-fold increases in protein abundance in major osmoregulatory tissues following transfer of fish to seawater (SW). This was accompanied by up to 5-fold increases in enzyme activity, and 1.8- and 3-fold increases in inositol contents within the gill and kidney, respectively. Immunohistological studies revealed that IMPA1 protein expression predominated in SW-acclimated fish within basal epithelial/epidermal layers of the gill, esophagus, intestine, skin, and fins. SW transfer also induced a 10-fold increase in inositol content in the fin. IMPA1 immunoreactivity was also identified in chondrocytes within the cartilagenous matrix of the gills and fins, as well as in clusters of interstitial cells surrounding the kidney tubules. The observed increases in expression of IMPA1 highlight a protective role for inositol within various eel tissues following SW acclimation. This constitutes an adaptive mechanism in teleost fish naturally exposed to hypertonic environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.