Abstract

Over the past several years, structural studies have led to the unexpected discovery of iron–sulfur clusters in enzymes that are involved in DNA replication/repair and protein biosynthesis. Although these clusters are generally well-studied cofactors, their significance in the new contexts often remains elusive. One fascinating example is a tryptophanyl-tRNA synthetase from the thermophilic bacterium Thermotoga maritima, TmTrpRS, that has recently been structurally characterized. It represents an unprecedented connection among a primordial iron–sulfur cofactor, RNA and protein biosynthesis. Here, a possible role of the [Fe4S4] cluster in tRNA anticodon-loop recognition is investigated by means of density functional theory and comparison with the structure of a human tryptophanyl-tRNA synthetase/tRNA complex. It turns out that a cluster-coordinating cysteine residue, R224, and polar main chain atoms form a characteristic structural motif for recognizing a putative 5′ cytosine or 5′ 2-thiocytosine moiety in the anticodon loop of the tRNA molecule. This motif provides not only affinity but also specificity by creating a structural and energetical penalty for the binding of other bases, such as uracil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.