Abstract

In developing retina, the nucleus of the elongated neuroepithelial cells undergoes interkinetic nuclear migration (INM), that is it migrates back and forth across the proliferative layer during the cell cycle. S-phase occurs at the basal side, while M-phase occurs at the apical margin of the retinal progenitors. G1 and G2-phases occur along the nuclear migration pathway. We tested whether this feature of the retinal cell cycle is controlled by CK2, which, among its many substrates, phosphorylates both molecular motors and cytoskeletal components. Double immunolabeling showed that CK2 is contained in BrdU-labeled retinal progenitors. INM was examined after pulse labeling the retina of newborn rats with BrdU, by plotting nuclear movement from basal to apical sides of the retinal progenitors during G2. The CK2 specific inhibitor 4,5,6,7-tetrabromobenzotriazole inhibited the activity of rat retinal CK2, and blocked nuclear movement proper in a dose-dependent way. No apoptosis was detected, and total numbers of BrdU-labeled nuclei remained constant following treatment. Immunohistochemistry showed that, following inhibition of CK2, the tubulin cytoskeleton is disorganized, with reduced acetylated and increased tyrosinated tubulin. This indicates a reduction in stable microtubules, with accumulation of free tubulin dimers. The results show that CK2 activity is required for INM in retinal progenitor cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.