Abstract

This paper focuses on the design of a distribution network problem in a three-tiered supply chain under uncertainty. The objective is to determine the optimal number, locations and capacities of plants and warehouses to minimize the overall network costs over a variety of economic growth scenarios. For this purpose, a mixed integer linear programming model is extended in a robust optimization framework and then three heuristic approaches based on genetic and memetic algorithms and a mathematical programming approach are used to solve this problem. The effectiveness of the proposed heuristics and the trade-off between model robustness and solution robustness is investigated and directions for further researches are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.