Abstract

ABSTRACTAn inverse problem of damage identification and localization in a structure is modelled as a robust optimization problem. In the robust optimization problem, the optimum value and small variations around this optimum value are considered. The structural health monitoring damage detection problem is solved using a multiobjective genetic algorithm. So, the robust optimum value is obtained by solving a multiobjective problem where a functional and a variance function of this functional are used. This variance function is obtained by a Design of Experiment with regression and also through a relation between functional variance and damage parameters found by artificial neural network. As a multiobjective genetic algorithm obtains multiple solutions, a fuzzy decision making technique finds the better tradeoff solution for the problem. Boundary element method is utilized to obtain the distribution of stress to elastostatic problem. Numerical results clearly show that the proposed strategy and the use an optimized fuzzy decision making results in accurate damage identification and represents a powerful tool for structural health monitoring. Based on the analysis and numerical results, suggestions to potential researchers have also been provided for future scopes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.