Abstract
The development of electric vehicles power electronics system control comprising of DC-AC inverters and DC-DC converters takes a great interest of researchers in the modern industry. A DC-AC inverter supplies the high power electric vehicle motors torques of the propulsion system and utility loads, whereas a DC-DC converter supplies conventional low-power, low-voltage loads. However, the need for high power bidirectional DC-DC converters in future electric vehicles has led to the development of many new topologies of DC-DC converters. Nonlinear control of power converters is an active area of research in the fields of power electronics. This paper focuses on a fuzzy sliding mode strategy (FSMS) as a control strategy for boost DC-DC converter power supply for electric vehicle. The proposed fuzzy controller specifies changes in the control signal based on the surface and the surface change knowledge to satisfy the sliding mode stability and attraction conditions. The performances of the proposed fuzzy sliding controller are compared to those obtained by a classical sliding mode controller. The satisfactory simulation results show the efficiency of the proposed control law which reduces the chattering phenomenon. Moreover, the obtained results prove the robustness of the proposed control law against variation of the load resistance and the input voltage of the studied converter.
Highlights
Electric vehicles power management has an important role, as it has the ability to decide the electric vehicle power status in efficient economy
The boost DC-DC converter used is designed for an input voltage of 10 to 72 V and an output voltage of 10 to 600 V and considered to supply a 3.5 kW and 300 V load
The research outlined in this paper has demonstrated the robustness and the dynamical performances for electric vehicle boost DC-DC converter by using the fuzzy sliding mode strategy
Summary
Electric vehicles power management has an important role, as it has the ability to decide the electric vehicle power status in efficient economy. A lot of researchers and several papers use a constant energy source alimentation to walk their electric vehicles, which does not exist in reality because all batteries have proper autonomous which depend on their specific energy storage (state of charge and depth of discharge) where the output voltage is not constant [3, 4]. For this reason, we use the DCDC converter with a control strategy to assure the energy requirement for the electric vehicle and the propulsion system. The boost power converters are widely used in applications like automotive and marine
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.