Abstract

ObjectiveTo propose a new method to estimate pulse pressure variability (PPV) in the arterial blood pressure waveform. MethodsTraditional techniques of calculating PPV using peak finding have a fundamental flaw that prevents them from accurately resolving PPV for small tidal volumes, limiting the use of PPV to only mechanical ventilated patients. The improved method described here addresses this limitation using Fourier analysis of an oscillatory signal that exhibits a time-varying modulation of its amplitude. The analysis reveals a constraint on the spectral representation that must be satisfied for any oscillatory signal that exhibits a time-varying modulation of its amplitude. This intrinsic mathematical structure is taken advantage of in order to improve the robustness of the algorithm. ResultsThe applicability of the method is tested using synthetic data and 100 h of physiologic data collected from patients admitted to Texas Children’s Hospital. Significance and conclusionThe proposed method accurately recovers values of PPV at signal-to-noise ratios six times smaller than the traditional method. This is a significant advance for the potential use of PPV to recognize fluid responsiveness during low tidal volume ventilation or spontaneous breathing for which the signal-to-noise ratio is expected to be small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.