Abstract

AbstractThe algorithms used to estimate rainfall from polarimetric radar variables show significant variance in error characteristics over the range of naturally occurring rain rates. As a consequence, to improve rainfall estimation accuracy using polarimetric radar, it is necessary to optimally combine a number of different algorithms. In this study, a new composite method is proposed that weights the algorithms by the inverse of their theoretical error. A number of approaches are discussed and are investigated using simulated radar data calculated from disdrometer measurements. The resultant algorithms show modest improvement over composite methods based on decision-tree logic—in particular, at rain rates above 20 mm h−1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.