Abstract

Prostate specific antigen (PSA) is the most significant biomarker for the screening of prostate cancer in human serum. However, most methods for the detection of PSA often require major laboratories, precisely analytical instruments and complicated operations. Currently, the design and development of satisfying electrochemical biosensors based on biomimetic materials (e.g. synthetic receptors) and nanotechnology is highly desired. Thus, we focused on the combination of molecular recognition and versatile nanomaterials in electrochemical devices for advancing their analytical performance and robustness. Herein, by using the present prepared multifunctional hydroxyl pillar[5]arene@gold nanoparticles@graphitic carbon nitride (HP5@AuNPs@g–C3N4) hybrid nanomaterial as robust biomimetic element, a high-performance electrochemical immunosensor for detection of PSA was constructed. The as-prepared immunosensor, with typically competitive advantages of low cost, simple preparation and fast detection, exhibited remarkable robustness, ultra-sensitivity, excellent selectivity and reproducibility. The limit of detection (LOD) and linear range were 0.12 pg mL–1 (S/N = 3) and 0.0005–10.00 ng mL–1, respectively. The satisfying results provide a promising approach for clinical detection of PSA in human serum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.