Abstract

Magnetic Resonance Imaging (MRI) is a medical imaging modality that is commonly employed for the analysis of different diseases. However, these images come with several problems such as noise and other imaging artifacts added during acquisition process. The researchers have actual challenges for segmentation under the consideration of these effects. In medical images, a well-known clustering approach like Fuzzy C-Means widely used for segmentation. The performance of FCM algorithm is fast in noise-free images; however, this method did not consider the spatial context of the image due to which its performance suffers when images corrupted with noise and other imaging relics. In this paper, a weighted spatial Fuzzy C-Means (wsFCM) segmentation method is proposed that considered the spatial information of image. Moreover, a spatial function is also developed that integrate a membership function. In order assess this function, a neighborhood window is established around a pixel and more weights have been assigned to those pixels which have greater correlation with central pixel in local neighborhood. By integration of this spatial function in membership function, the modified membership function strengthens the original membership function in handling the noise and intensity inhomogeneity, which has the ability to preserves and maintains structural information like edges. A comprehensive set of experimentation is performed on publicly accessible simulated and real standard brain MRI datasets. The performance of the proposed method has been compared with existing state-of-the-art methods. The results show that the performance of the proposed method is better and robust in handling noise and intensity inhomogeneity than of the existing works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.