Abstract

Intermittency in the output power of renewable and green energy sources (RGES) and low inertia of a standalone microgrid (SMG) result in large frequency deviations. Use of energy storage systems (ESSs) alleviate the SMG frequency deviations in an adorable manner but their high cost and low power density calls for alternative sources to balance the mismatch between power supply and demand. In recent years, utilization of the battery of an electric vehicle (EV) to minimize the frequency deviations has gained a lot of attention. Consequently, this paper proposes a robust and newly developed bio-inspired Salp Swarm Optimization (SSO) algorithm based PI-PD cascade controller for load frequency control (LFC) of the SMG integrated with the EVs. To demonstrate the efficacy of the proposed controller, its performance has been compared with other well-known controllers and algorithms considering diverse SMG operating scenarios. Simulation results distinctly prove the superiority of the proposed controller over the other controllers. Also, robustness of the proposed controller has been tested subject to ±50% variation in certain SMG parameters. Results clearly justify the robustness of the proposed controller. Additionally, operational stability of the SMG has been appraised through Eigenvalue and Bode diagram analysis for all the scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.