Abstract

Proprioceptive function can become enhanced during motor learning. Yet, we have incomplete knowledge to what extent proprioceptive function is trainable and how a training that enhances proprioception may influence performance in untrained motor skills. To address this knowledge gap, healthy young adults (N = 14) trained in a visuomotor task that required learners to make increasingly accurate wrist movements. Using a robotic exoskeleton coupled with a virtual visual environment, participants tilted a virtual table through continuous wrist flexion/extension movements with the goal to position a rolling ball on table into a target. With learning progress, the level of difficulty increased by altering the virtual ball mechanics and the gain between joint movement and ball velocity. Before and after training, wrist position sense acuity and spatial movement accuracy in an untrained, discrete wrist-pointing task was assessed using the same robot. All participants showed evidence of proprioceptive-motor learning. Mean position sense discrimination threshold improved by 34%. Wrist movement accuracy in the untrained pointing task improved by 27% in 13/14 participants. This demonstrates that a short sensorimotor training challenging proprioception can a) effectively enhance proprioceptive acuity and b) improve the accuracy of untrained movement. These findings provide a scientific basis for applying such somatosensory-based motor training to clinical populations with known proprioceptive dysfunction to enhance sensorimotor performance.

Highlights

  • IntroductionUsing a virtual reality environment in combination with the wrist robot, training required participants to use vision and proprioception to balance a virtual ball on a virtual table by making controlled, small amplitude wrist flexion/extension movements based on visual and haptic feedback received (Fig. 4B)

  • Numerous behavioral treatment approaches have been introduced as a specialized proprioceptive training regimen designed to enhance proprioceptive function with the aim to improve or accelerate motor rehabilitation

  • The empirical evidence on the efficacy of these approaches has been mixed[12], partly because the proprioceptive outcome measures reported were either not sensitive or because they infer improvements in proprioceptive function based on motor improvements

Read more

Summary

Introduction

Using a virtual reality environment in combination with the wrist robot, training required participants to use vision and proprioception to balance a virtual ball on a virtual table by making controlled, small amplitude wrist flexion/extension movements based on visual and haptic feedback received (Fig. 4B). When participants flexed or extended their wrist, the virtual table tipped either to the left or to the right respectively, resulting in the virtual ball moving as it would happen in real world. Within a training block (i.e. a level of task difficulty), a balanced wrist position of either 10°, 15° or 20° flexion from the neutral joint position corresponded to a fully balanced, horizontal position of the virtual board where the ball would not move. Advancing to the level of difficulty, required the learner to increase the spatial and temporal accuracy of his/her wrist movements in order to be successful in moving the ball to the target.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.