Abstract

Estimation of distribution algorithms (EDAs) solve an optimization problem heuristically by finding a probability distribution focused around its optima. Starting with the uniform distribution, points are sampled with respect to this distribution and the distribution is changed according to the function values of the sampled points. Although there are many successful experiments suggesting the usefulness of EDAs, there are only few rigorous theoretical results apart from convergence results without time bounds. Here we present first rigorous runtime analyses of a simple EDA, the compact genetic algorithm (cGA), for linear pseudo-Boolean functions on n variables. We prove a general lower bound for all functions and a general upper bound for all linear functions. Simple test functions show that not all linear functions are optimized in the same runtime by the cGA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.