Abstract
We consider a smooth groupoid of the form \Sigma\rtimes\Gamma where \Sigma is a Riemann surface and \Gamma a discrete pseudogroup acting on \Sigma by local conformal diffeomorphisms. After defining a K-cycle on the crossed product C_0(\Sigma)\rtimes\Gamma generalising the classical Dolbeault complex, we compute its Chern character in cyclic cohomology, using the index theorem of Connes and Moscovici. This involves in particular a generalisation of the Euler class constructed from the modular automorphism group of the von Neumann algebra L^{\infty}(\Sigma)\rtimes\Gamma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.