Abstract

Biharmonic functions are the solutions of the fourth order partial differential equation $$\Delta \Delta \omega =0$$ . The purpose of this paper is to solve a kind of Riemann boundary value problem for biharmonic functions assuming higher order Lipschitz boundary data. We approach this problem making use of generalized Teodorescu transforms for obtaining the explicit expression of its solution in a Jordan domain $$\Omega \subset \mathbb {R}^2$$ with fractal boundary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.