Abstract

Abstract The unique size and surface morphology of nanoparticles (NPs) have substantially influenced all aspects of human life, making nanotechnology a novel and promising field for various applications in biomedical sciences. Metallic NPs have gained immense interest over the last few decades due to their promising optical, electrical, and biological properties. However, the aggregation and the toxic nature of these NPs have restricted their utilization in more optimized applications. The optimum selection of biopolymers and biological macromolecules for surface functionalization of metallic NPs will significantly improve their biological applicability and biocompatibility. The present mini-review attempts to stress the overview of recent strategies involved in surface functionalization of metallic NPs, their specific biomedical applications, and comparison of their in vitro, ex vivo, and in vivo toxicities with non-functionalized metallic NPs. In addition, this review also discusses the various challenges for metallic NPs to undergo human clinical trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.