Abstract

Parkinson's Disease (PD) is the most common neurodegenerative disorder after Alzheimer's Disease and is clinically expressed by movement disorders, such as tremor, bradykinesia, and rigidity. It occurs mainly in the extrapyramidal system of the brain and is characterized by dopaminergic neuron degeneration. L-DOPA, dopaminergic agonists, anticholinergic drugs, and MAO-B inhibitors are currently used as therapeutic agents against PD, however, they have only symptomatic efficacy, mainly due to the complex pathophysiology of the disease. This review summarizes the main aspects of PD pathology, as well as, discusses the most important biochemical dysfunctions during PD, and presents novel multi-targeting compounds, which have been tested for their activity against various targets related to PD. This review selects various research articles from main databases concerning multi-targeting compounds against PD. Molecules targeting more than one biochemical pathway involved in PD, expected to be more effective than the current treatment options, are discussed. A great number of research groups have designed novel compounds following the multi-targeting drug approach. They include structures combining antioxidant, antiinflammatory, and metal-chelating properties. These compounds could be proven useful for effective multi-targeted PD treatment. Multi-targeting drugs could be a useful tool for the design of effective antiparkinson agents. Their efficacy towards various targets implicated in PD could be the key to the radical treatment of this neurodegenerative disorder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.