Abstract

In recent years, the global poultry industry has been facing increasing and challenging myopathies such as the woody breast (WB) condition that has caused significant economic losses. Even though the etiological causes of WB myopathy are still unknown or partially understood, the intensive genetic selection for rapid-growth rates and high yields in broilers may be the main factor associated with the development of this abnormality. The severity of this anomaly and its incidence rates are associated with fast-growing and heavier broilers, especially with those from high breast yielding strains. Such WB myopathy is primarily characterized by a notorious hardness in broiler breast muscles, which exhibit morphometric and histopathological alterations coupled with physicochemical abnormalities that result in undesired sensory, nutritional, and technological properties. In this negative context, although scientists are trying to solve or reduce the prevalence of this meat quality problem, the poultry industry needs noncontact and rapid in-line methods for WB detection at the fillet and/or carcass level that could help to establish automated objective grading or sorting systems according to its severity. Another need is the development and selection of profitable alternatives for the utilization of WB meat once poultry carcasses or deboned fillets affected by this abnormality are objectively detected and sorted. Indeed, there is a need for studies to expand the industrial applications of WB meat in further processed products, optimizing the incorporation of this affected chicken meat based on sensorial, technological, and nutritional profile evaluations. Even though a better understanding of the contribution of genetic and nongenetic factors to the development of growth-related myopathies can be the main strategy to mitigate their negative effects, the poultry industry could benefit from meeting the aforementioned needs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.