Abstract

Data in practice are often of high dimension and multivariate in nature. Detection of outliers has been one of the problems in multivariate analysis. Detecting outliers in multivariate data is difficult and it is not sufficient by using only graphical inspection. In this paper, a nontechnical and brief outlier detection method for multivariate data which are projection pursuit method, methods based on robust distance and cluster analysis are reviewed. The strengths and weaknesses of each method are briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.