Abstract
Pulmonary drug delivery has garnered significant attention due to its targeted local lung action, minimal toxic side effects, and high drug utilization. However, the physicochemical properties of inhaled nanoparticles (NPs) used as drug carriers can influence their interactions with the pulmonary surfactant (PS) monolayer, potentially altering the fate of the NPs and impairing the biophysical function of the PS monolayer. Thus, the objective of this review is to summarize how the physicochemical properties of NPs affect their interactions with the PS monolayer. Initially, the definition and properties of NPs, as well as the composition and characteristics of the PS monolayer, are introduced. Subsequently, the coarse-grained molecular dynamics (CGMD) simulation method for studying the interactions between NPs and the PS monolayer is presented. Finally, the implications of the hydrophobicity, size, shape, surface charge, surface modification, and aggregation of NPs on their interactions with the PS monolayer and on the composition of biomolecular corona are discussed. In conclusion, gaining a deeper understanding of the effects of the physicochemical properties of NPs on their interactions with the PS monolayer will contribute to the development of safer and more effective nanomedicines for pulmonary drug delivery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.