Bioresource Technology | VOL. 363
Read
A review on design-build-test-learn cycle to potentiate progress in isoprenoid engineering of photosynthetic microalgae
Abstract
Currently, the generation of isoprenoid factories in microalgae relies on two strategies: 1) enhanced production of endogenous isoprenoids; or 2) production of heterologous terpenes by metabolic engineering. Nevertheless, low titers and productivity are still a feature of isoprenoid biotechnology and need to be addressed. In this context, the mechanisms underlying isoprenoid biosynthesis in microalgae and its relationship with central carbon metabolism are reviewed. Developments in microalgal biotechnology are discussed, and a new approach of integrated "design-build-test-learn" cycle is advocated to the trends, challenges and prospects involved in isoprenoid engineering. The emerging and promising strategies and tools are discussed for microalgal engineering in the future. This review encourages a systematic engineering perspective aimed at potentiating progress in isoprenoid engineering of photosynthetic microalgae.
Concepts
Microalgal Biotechnology Central Carbon Metabolism Metabolic Engineering Production Of Isoprenoids Low Titers Production Of Terpenes Developments In Biotechnology Central Metabolism Systematic Perspective Photosynthetic Microalgae
Introducing Weekly Round-ups!Beta
Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.
Climate change Research Articles published between Jan 23, 2023 to Jan 29, 2023
Climate change adaptation has shifted from a single-dimension to an integrative approach that aligns with vulnerability and resilience concepts. Adapt...
Read MoreDisclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.