Abstract

Perovskite solar cells (PSCs) have been developed rapidly in recent years because of their excellent photoelectric performance. However, interfacial non-radiative recombination hinders the improvement of device performance. The buried interface modification strategy can minimize the non-radiation recombination in the interface and can obtain the high efficiency and stability of PSCs. In this review, we introduce the device structure and the charge carrier dynamics (charge transfer, extraction, and collection) at the interface. We further summarize the main sources of non-radiative recombination at the interface, such as energy alignment mismatch and interface defects, and methods to characterize them. In contrast to the previous review of perovskite solar cells, the important roles of buried interfaces in regulating energy level alignment, passivating surface defects, modulating morphology, and so on are reviewed in detail based on the latest research, and strategies for reducing interfacial nonradiative recombination are provided. In the end, the potential development and challenges of buried interfaces for high-performance and stable PSCs are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.