Abstract

This review considers cases in which a discrete transition-metal complex is added as a precatalyst for reductive catalysis (primarily hydrogenation catalysis). It focuses on the problem of determining if the true catalyst is a homogeneous transition-metal complex or a soluble or other metal-particle heterogeneous catalyst. This review considers cases in which a discrete transition-metal complex is used as a precatalyst for reductive catalysis; it focuses on the problem of determining if the true catalyst is a metal-complex homogeneous catalyst or if it is a soluble or other metal-particle heterogeneous catalyst. The various experiments that have been used to distinguish homogeneous and heterogeneous catalysis are outlined and critiqued. A more general method for making this distinction is then discussed. Next, the circumstances that make heterogeneous catalysis probable, and the telltale signs that a heterogeneous catalyst has formed, are outlined. Finally, catalytic systems requiring further study to determine if they are homogeneous or heterogeneous are listed. The major findings of this review are: (i) the in situ reduction of transition-metal complexes to form soluble-metal-particle heterogeneous catalysts is common; (ii) the formation of such a catalyst is easy to miss because colloidal solutions often appear homogeneous to the naked eye; (iii) a variety of experiments have been used to distinguish homogeneous catalysis from heterogeneous catalysis, but there is no single definitive experiment for making this distinction; (iv) experiments that provide kinetic information are key to the correct identification of the true catalyst; and (v) a more general approach for distinguishing homogeneous catalysis from heterogeneous catalysis has been developed. Additionally, (vi) the conditions under which a heterogeneous catalyst is likely to form include: (a) when easily reduced transition-metal complexes are used as precatalysts; (b) when forcing reaction conditions are employed; (c) when nanocluster stabilizers are present; and (d) when monocyclic arene hydrogenation is observed. Finally, (vii) the telltale signs of heterogeneous catalysis include the formation of dark reaction solutions, metallic precipitates, and the observation of induction periods and sigmoidal kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.