Abstract

Three-dimensional (3D) braided composites with high specific energy absorption behavior and excellent fatigue performances are widely used in structures under cycle or impact load. A comprehensive literature survey is conducted to review the numerical analysis methods of 3D braided composites, including meso-geometry modeling, mesh generation techniques, and progressive damage models. When the 3D braided composites are manufactured during a process cycle, the braid yarn can move and becomes a ‘deviated or imperfect’ architecture. Elaborate meso-geometrical models which directly influence the precision of numerical results can be established by different methods. Different mesh generation techniques of different numerical methods, which manage to discretize the complex geometry models, are provided. An analysis of various models involved in the prediction of damage development and failure of 3D braided composites by using finite element method is presented. This study highlights the importance of recognizing the meso-structure for analyzing mechanical behavior of 3D braided composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.