Abstract

Lithium-ion (Li-ion) batteries have been utilized increasingly in recent years in various applications, such as electric vehicles (EVs), electronics, and large energy storage systems due to their long lifespan, high energy density, and high-power density, among other qualities. However, there can be faults that occur internally or externally that affect battery performance which can potentially lead to serious safety concerns, such as thermal runaway. Thermal runaway is a major challenge in the Li-ion battery field due to its uncontrollable and irreversible nature, which can lead to fires and explosions, threatening the safety of the public. Therefore, thermal runaway prognosis and diagnosis are significant topics of research. To efficiently study and develop thermal runaway prognosis and diagnosis algorithms, thermal runaway modeling is also important. Li-ion battery thermal runaway modeling, prediction, and detection can help in the development of prevention and mitigation approaches to ensure the safety of the battery system. This paper provides a comprehensive review of Li-ion battery thermal runaway modeling. Various prognostic and diagnostic approaches for thermal runaway are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.