Abstract

In line with the recent industrial trends of hyperconnectivity, 5G technology deployment, the Internet of Things (IoT) and Industry 4.0, the ultimate goal of corrosion prevention is the invention of smart coatings that are able to assess their own condition, predict the onset of corrosion and alert users just before it happens. It is of particular interest to tackle corrosion that occurs in non-accessible areas where human inspectors or handheld devices are useless. To accomplish this, a variety of technologies that are embedded or could potentially be embedded into the coatings are being developed to monitor coating condition, which are based, for instance, on the evolution of electrochemical or mechanical properties over time. For these technologies to be fully embedded into the coatings and work remotely, solutions are needed for connectivity and power supply. A paradigm shift from routine prescheduled maintenance to condition-based preventive maintenance could then become a reality. In this work, the technologies that enable the in-service monitoring of organic anticorrosion coatings were compiled. Soon, some of them could be integrated into the sensing elements of autonomous, connected neural-like networks that are capable of remotely assessing the condition of the anticorrosion protection of future infrastructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.