Abstract

The discovery of superconductivity in palladium-hydrogen ( PdH ) and its isotopes ( D , T ) at low temperature, brought about extensive study of this system. These studies have shown that the critical transition temperature is a function of the H concentration x in the PdHxsystem with Tc=9 K for x =1. In the last decade we defined a room temperature and room pressure technique to load H and maintain stable the stoichiometry in Pd lattice at levels higher than unit. Several magnetic and electric transport measurements have been performed showing transition temperature in the range of [18 K < Tc< 273 K ]. Moreover in a typical critical current measurement configuration, current density greater than 6*104Acm-2⊐ has been measured at liquid nitrogen temperature. The 263.5K superconducting transition after a week of sample storage at room pressure and temperature, decreased down to 261.5K and after 2 years it became 160.5K, demonstrating a fairly good stability of the sample. Evidences of the flux exclusion (ZFC measurements) and the flux expulsion (FC measurements) have been found at very high transition temperature ( Tc =235 K ) for the PdH system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.