Abstract
Faced with increasingly serious energy and global warming, it is critical to put forward an alternative non-carbonaceous fuel. In this regard, hydrogen appears as the ultimate clean fuel for power and heat generation, and as an important feedstock for various chemical and petrochemical industries. The chemical looping reforming (CLR) concept, is an emerging technique for the conversion of hydrocarbon fuels into high-quality hydrogen via the circulation of oxygen carriers which allows a decrease in CO2 emissions. In this review, a comprehensive evaluation and recent progress in glycerol, ethanol and methane reforming for hydrogen production are presented. The key elements for a successful CLR process are studied and the technical challenges to achieve high-purity hydrogen along with the possible solutions are also assessed. As product quality, cost and the overall efficiency of the process can be influenced by the oxygen carrier materials used, noteworthy attention is given to the most recent development in this field. The use of Ni, Fe, Cu, Ce, Mn and Co-based material as potential oxygen carriers under different experimental conditions for hydrogen generation from different feedstock by CLR is discussed. Furthermore, the recent research conducted on the sorption-enhanced reforming process is reviewed and the performance of the various type of CO2 sorbents such as CaO, Li2ZrO3 and MgO is highlighted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.