Abstract

The rechargeable nonaqueous lithium-air (Li-O(2)) battery is receiving a great deal of interest because, theoretically, its specific energy far exceeds the best that can be achieved with lithium-ion cells. Operation of the rechargeable Li-O(2) battery depends critically on repeated and highly reversible formation/decomposition of lithium peroxide (Li(2)O(2)) at the cathode upon cycling. Here, we show that this process is possible with the use of a dimethyl sulfoxide electrolyte and a porous gold electrode (95% capacity retention from cycles 1 to 100), whereas previously only partial Li(2)O(2) formation/decomposition and limited cycling could occur. Furthermore, we present data indicating that the kinetics of Li(2)O(2) oxidation on charge is approximately 10 times faster than on carbon electrodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.