Abstract
Animal eyes resolve images 10-100 times better than either the acceptance angle of a single photoreceptor or the center-to-center distance between neighboring photoreceptors. A new model of the fly's visual system emulates this improved performance, offering a different approach to subpixel resolution. That an animal without a cortex is capable of this performance suggests that high level computation is not involved. The model takes advantage of a photoreceptor cell's internal structure for capturing and transducing light. This organelle is a waveguide. Neurocircuitry exploits the waveguide's optical nonlinearities, namely the shoulder region of its gaussian, angular-sensitivity profile, to extract high resolution information from the visual scene. The receptive fields of optically disparate inputs overlap in space. Photoreceptor input is continuous rather than discretely sampled. The output of the integrating module is a signal proportional to the position of the target within the detector array. Input imbalance at the level of the photodiode modules is detected by circuitry connecting neighboring visual elements. A pulsed network of these connections forms a parallel array that segments edges of an object and continuously reports its position to the underlying layer of feature extractors, offering a new approach to real time processing with high resolution and reduced computational load.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.