Abstract

In 2018, Ferrari et al. wrote a paper called “Phase Transition for Infinite Systems of Spiking Neurons” in which they introduced a continuous time stochastic model of interacting neurons. This model consists in a countable number of neurons, each of them having an integer-valued membrane potential, which value determine the rate at which the neuron spikes. This model has also a parameter $$\gamma $$, corresponding to the rate of the leak times of the neurons, that is, the times at which the membrane potential of a given neuron is spontaneously reset to its resting value (which is 0 by convention). As its title says, it was proven in this previous article that this model presents a phase transition phenomenon with respect to $$\gamma $$. Here we prove that this model also exhibits a metastable behavior. By this we mean that if $$\gamma $$ is small enough, then the re-normalized time of extinction of a finite version of this system converges toward an exponential random variable of mean 1 as the number of neurons goes to infinity.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call