Abstract

A miniature resonant tactile sensor for tissue stiffness detection in robot-assisted minimally invasive surgery is proposed in this article. The proposed tactile sensor can detect tissue stiffness based on the principle of the resonant frequency shift when it contacts with tissue of different stiffness. A PZT (lead zirconate titanate) bimorph works simultaneously as the actuator and the sensing element, which is helpful for simplifying the structure. The resonant frequency shift can be deduced by measuring the electrical impedance of the PZT bimorph, since there will be an abrupt change of the impedance when resonance occurs. A unique structure of an Archimedean spiral metal sheet is introduced to restrict the outer size of the sensor within 10 mm and to keep the resonant frequency low. A theoretical model is established. Finite element method analyses are carried out to validate the working principle and it meets the theoretical model quite well. Several silicone samples are tested with the sensor and the results show that the proposed sensor is capable of measuring tissue stiffness within the range of 0-2 MPa, detecting and locating lumps inside tissue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.