Abstract

In this work, we propose a novel approach towards sequential data modeling that leverages the strengths of hidden Markov models and echo-state networks (ESNs) in the context of non-parametric Bayesian inference approaches. We introduce a non-stationary hidden Markov model, the time-dependent state transition probabilities of which are driven by a high-dimensional signal that encodes the whole history of the modeled observations, namely the state vector of a postulated observations-driven ESN reservoir. We derive an efficient inference algorithm for our model under the variational Bayesian paradigm, and we examine the efficacy of our approach considering a number of sequential data modeling applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.