Abstract

In this paper we introduce a randomly truncated sequential hypothesis test. Using the framework of a repeated significance test (RST), we study a sequential test with truncation time based on a random stopping time. Using the functional central limit theorem (FCLT) for a sequence of statistics, we derive a general result that can be employed in developing a repeated significance test with random sample size. We present effective methods for evaluating accurate approximations for the probability of type I error and the power function. Numerical results are presented to evaluate the accuracy of these approximations. We apply the proposed test to a decentralized sequential detection problem in sensor networks (SNs) with communication constraints. Finally, a sequential detection problem with measurements at random times is investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.