Abstract

Liquid-free ionic conductors (LFICs) have promising applications in flexible electronics because most ionic conductors currently suffer from ionic liquid leakage or water evaporation issues. However, it has been a formidable challenge for LFICs to achieve long-term repeated self-adhesion on different substrates, especially on soft biological tissues. Based on the double-network design concept, we first fabricate a series of repeatable self-adhesive liquid-free double-network ionic conductors (SALFDNICs), consisting of stretchable first poly(AA-ChCl)-type supramolecular deep eutectic polymer networks and stiff second polydopamine (PDA) networks, which can maintain sufficient dynamic hydrogen bonds and catechol groups in the ionic conductors by preventing the overoxidation of dopamine, thus balancing the contradiction between adhesion and cohesion in liquid-free ionic conductors. Therefore, SALFDNICs can instantly form various interface interaction forces with multiple substrates (adhesion strength up to 757 N/m) and firmly adhere to various substrates for 20 detachment-reattachment cycles with a reduction in adhesion strength of less than 15%. Furthermore, SALFDNICs also have other comprehensive properties, such as optimum self-healing properties (self-healing efficiency of 90%), good stretchability (strain at break of 1200%), and promising conductivity (2.31 × 10-2 S m-1). Therefore, we believe that the extraordinary performance of SALFDNICs is important for improving device integration and the further development of flexible electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.