Abstract
It is shown that any two-dimensional elastic tensor can be orthogonally and uniquely decomposed into a symmetric tensor and an antisymmetric tensor. To within a scalar multiplier, the latter turns out to be equal to the right-angle rotation on the space of two-dimensional second-order symmetric tensors. On the basis of these facts, several useful results are derived for the traction boundary value problem of plane linear elasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.