Abstract

We propose a model that describes phase transition including metastable states present in the van der Waals Equation of State. From a convex optimization problem on the Helmoltz free energy of a mixture, we deduce a dynamical system that is able to depict the mass transfer between two phases, for which equilibrium states are either metastable states, stable states or a coexistent state. The dynamical system is then used as a relaxation source term in an isothermal 4×4 two-phase model. We use a Finite Volume scheme that treats the convective part and the source term in a fractional step way. Numerical results illustrate the ability of the model to capture phase transition and metastable states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.