Abstract
For path following of snake robots, many model-based controllers have demonstrated strong tracking abilities. However, a satisfactory performance often relies on precise modelling and simplified assumptions. In addition, visual perception is also essential for autonomous closed-loop control, which renders the path following of snake robots even more challenging. Hence, a novel reinforcement learning-based hierarchical control framework is designed to enable a snake robot with an onboard camera to realize autonomous self-localization and path following. Specifically, firstly, a path following policy is trained in a hierarchical manner, in which the RL algorithm and gait knowledge are well combined. On this basis, the training efficiency is sufficiently optimized, and the path following performance of the control policy is greatly improved, which can then be implemented on a practical snake robot without any additional training. Subsequently, in order to promote visual self-localization during path following, a visual localization stabilization item is added to the reward function that trains the path following strategy, which endows a snake robot with smooth steering ability during locomotion, thereby guaranteeing the accuracy of visual localization and facilitating practical applications. Comparative simulations and experimental results are illustrated to exhibit the superior performance of the proposed hierarchical path following the control method in terms of convergence speed and tracking accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.