Abstract
Wafer processing is the most expensive, time-consuming, and complex stage in semiconductor manufacturing. It varies significantly based on orders of customers (agents). Optimising the wafer processing flow in a multi-agent scenario can meet customised requirements, speed up delivery, and reduce costs. This work models wafer processing as a multi-agent job shop scheduling problem (MAJSP) with release dates. The objective is to minimise the total weighted makespan of agents. To address both dynamic and static scheduling scenarios in the MAJSP context, two deep reinforcement learning-based (DRL) methods are proposed. In a dynamic scheduling scenario, the statuses of orders and production resources can change at any moment. A DRL method called Graph Transformer Network (GTN) is proposed to rapidly generate high-quality solutions. In a static scheduling scenario, the production plan can be formulated based on predetermined demand and resource conditions. A novel hybrid method (GTN-DABC) that combines GTN with the discrete artificial bee colony algorithm (DABC) is proposed to provide high-quality production plans for manufacturers within an acceptable computation time. Experimental results demonstrate that the proposed GTN outperforms existing heuristics, and the well-designed GTN-DABC is more competitive than other meta-heuristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.