Abstract

AbstractThe flow behind a model of a wind turbine rotor is investigated experimentally in a water flume using particle image velocimetry (PIV) and laser Doppler anemometry (LDA). The study performed involves a three-bladed wind turbine rotor designed using the optimization technique of Glauert (Aerodynamic Theory, vol. IV, 1935, pp. 169–360). The wake properties are studied for different tip speed ratios and free stream speeds. The data for the various rotor regimes show the existence of a regular Strouhal number associated with the development of an instability in the far wake of the rotor. From visualizations and a reconstruction of the flow field using LDA and PIV measurements it is found that the wake dynamics is associated with a precession (rotation) of the helical vortex core.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.