Abstract

A reduced order approach is introduced in this paper that can be used to predict the steady-state response of mistuned bladed disks. This approach takes results directly from a finite element analysis of a tuned system and, based on the assumption of rigid blade base motion, constructs a computationally efficient mistuned model with a reduced number of degrees of freedom. Based on a comparison of results predicted by different approaches, it is concluded that: The reduced order model displays structural fidelity comparable to that of a finite element model of the entire bladed disk system with significantly improved computational efficiency; and under certain circumstances both the finite element model and the reduced order model predict quite different response from simple spring-mass models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.