Abstract

We present a reduced-boundary-function method for longitudinal solute transport in symmetric laminar flows. Flow is confined by two flat plates separated by a distance of 2a or by a tube with a radius of a (Figure 1). The standard advection-diffusion equation is mapped onto the boundary (r = a and r = 0, where r is the distance from the centerline shown in Figure 1). The original problem of solving c(x,r,t) is reduced to solve the solutions of c at the boundary, and the problem dimensionality is reduced from 3 to 2. Final results show that the boundary concentration ca(x,t) = c(x, r = a,t) is advected at the mean velocity with a dispersion equal to the molecular diffusion. The centerline concentration c0(x,t) = c(x,r = 0,t) is also advected at the mean velocity, but with a dispersion much larger than the Taylor dispersion. The cross-sectional average concentration is in agreement with the classical Taylor dispersion by neglecting higher order contributions. This study is relevant to the upscaling of solute transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.