Abstract

The digital design methodologies are evolving with the increase of digital systems utilization in daily life. The Model Based Design (MBD) methodology provides a unique methodology for design and implementation of digital systems on Field Programmable Gate Array (FPGA). Recently, a lot of research effort has been put to exploit new methodologies for designing and prototyping of digital systems on FPGA. The FPGA hardware provides prototyping which provides means of verifying your design at an early stage of development cycle. This helps to evaluate design trade-offs by testing the design in real-time on hardware. Making prototypes is a common practice in research-oriented projects. However, it requires excess development time which increases time to market of the product. This paper illustrates the use of reconfigurable MBD for rapid prototyping of digital systems on Microsemi ACTEL FPGAs for improving the design-cycle and time-to-market of a product. The model is simulated to verify the functionality of the design at system-level and a high-level code is generated from the MBD toolset embedded in MATLAB for hardware implementation. Then, a High-Level Synthesis (HLS) is performed on the generated code which converts this high-level code into Verilog-HDL suitable for hardware implementation on FPGA. Hence, this work presents a methodology and its analysis for design of digital system using high-level synthesis on Microsemi ACTEL FPGA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.